The Generative AI Innovation Center at AWS helps AWS customers accelerate the use of Generative AI and realize transformational business opportunities. This is a cross-functional team of ML scientists, engineers, architects, and strategists working step-by-step with customers to build bespoke solutions that harness the power of Generative AI.
As an Applied Scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience.
We’re looking for ML Applied Scientists capable of using GenAI and other ML/DL techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems.
Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services.
Key job responsibilities
As an ML Applied Scientist, you will:
- Collaborate with ML scientist and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges across industries
- Interact with customers directly to understand the business problem, and help them in defining and implementing generative AI solutions and guide customers on adoption patterns and paths to production
- Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution
- Create and deliver best practice recommendations, scientific artifacts, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholders
A day in the life
About AWS
Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.
Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.
Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud
About the team
The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and fine-tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently.
Basic Qualifications
- PhD, or Master's degree and 4+ years of deep learning, computer vision, human robotic interaction, algorithms implementation experience
- Experience in patents or publications at top-tier peer-reviewed conferences or journals
- Experience programming in Java, C++, Python or related language
- Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
Preferred Qualifications
- Experience with generative deep learning models applicable to the creation of synthetic humans like CNNs, GANs, VAEs and NF
- Experience in building machine learning models for business application
Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, please visit https://www.amazon.jobs/en/disability/us.
Pursuant to the San Francisco Fair Chance Ordinance, we will consider for employment qualified applicants with arrest and conviction records.
Our compensation reflects the cost of labor across several US geographic markets. The base pay for this position ranges from $136,000/year in our lowest geographic market up to $222,200/year in our highest geographic market. Pay is based on a number of factors including market location and may vary depending on job-related knowledge, skills, and experience. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, please visit https://www.aboutamazon.com/workplace/employee-benefits. This position will remain posted until filled. Applicants should apply via our internal or external career site.