Advertisement for subjects such as: all fields of study.

Explaining the predictions of ML models remains an important yet challenging task for the successful application of ML-based solutions, especially in safety-critical domains. A rather novel method is data attribution, where specific test predictions are attributed to the training data. We are interested in practical applications of these methods to ensure the safety and reliability of ML in real-world scenarios.

What you will do

This thesis can take one of two directions: you can focus on the technical side and implement or improve current data attribution methods.

Alternatively, you can focus on the applied side and derive best practices and recommendations for the use of data attribution methods. In this case, you could conduct interviews with practitioners.

What you bring to the table

  • Experience in Python programming and the ability to write clean and well-structured code is necessary for the technical focus
  • Prior experience with machine learning and common frameworks such as TensorFlow, PyTorch, or scikit-learn is a plus
  • Knowledge of German is a plus

What you can expect

  • Opportunity to work at the intersection of research and industry within one of Europe's leading AI ecosystems
  • Contribute to actual industrial projects with code that is implemented in real-world applications
  • Employment as a research assistant (HiWi) for the duration of your thesis contract

We value and promote the diversity of our employees' skills and therefore welcome all applications - regardless of age, gender, nationality, ethnic and social origin, religion, ideology, disability, sexual orientation and identity. Severely disabled persons are given preference in the event of equal suitability. 

With its focus on developing key technologies that are vital for the future and enabling the commercial utilization of this work by business and industry, Fraunhofer plays a central role in the innovation process. As a pioneer and catalyst for groundbreaking developments and scientific excellence, Fraunhofer helps shape society now and in the future. 

Interested? Apply online now. We look forward to getting to know you!
 

Frau Jennifer Leppich
Recruiting
Tel. +49 711 970-1415

jennifer.leppich@ipa.fraunhofer.de

Fraunhofer Institute for Manufacturing Engineering and Automation IPA 

www.ipa.fraunhofer.de 

Requisition Number: 72929                Application Deadline:

Location

Stuttgart, DE, 70569

Job Overview
Job Posted:
8 months ago
Job Expires:
Job Type
Full Time

Share This Job: